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Abstract— The automatic monitoring/tracking of environmen-
tal boundaries by multi-agent systems is a fundamental problem
that has many practical applications. In this paper, we address
this problem with formation control techniques based on parame
tric curves that represent the boundary’s feedback shape. For
that, we approximate the curve with truncated Fourier series,
whose finite coefficients are utilized to characterize the curve’s
shape and to automatically distribute the agents along it. These
feedback Fourier coefficients are exploited to design a new type of
formation controller that drives the agents to form desired curves.
A detailed stability analysis is provided for the proposed control
methodology, considering both fixed and switching multi-agent
topologies. The reported numerical simulation and experimental
studies demonstrate the performance and feasibility of our new
method to track closed boundaries of different shapes.

Index Terms— Multi-agent systems, robotics, formation
control, Fourier series, sensor-based control.

I. INTRODUCTION

THE control of multi-agent systems (MAS) is a chal-
lenging problem on which many researchers have

made multiple fundamental contributions over the last few
decades [1], [2]. Traditional control problems in MAS include
consensus, formation control, task allocation, synchronization,
etc. [3]. Our focus in this paper is to study the develop-
ment of new formation control strategies to position multiple
robotic agents along closed parametric curves whose shape
may smoothly change over time. This problem differs from
standard formation controls in that the explicit target location
for each agent is not known in advance, and thus, needs to be
automatically solved from the curve’s parametric geometry.
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Fig. 1. Conceptual representation of a MAS approaching a closed boundary.

Formation controls can be categorized (based on the agents’
sensing capabilities and interaction topologies) into the follow-
ing three strategies [4]: position-based, displacement-based,
and distance-based controls. Position-based strategies (which
are the most widely used among the three) calculate the desired
formation for the MAS using absolute position vectors [4].
In this paper, we extend this basic idea and show how finite
Fourier coefficients [5] (computed from a parametric contour
defined in absolute coordinates) can be instead used to specify
a desired formation, a strategy that effectively solves the lack
of an explicit position target for each agent.

Formation controls are typically used to coordinate the
motion of a variety of systems such as spacecraft [6],
unmanned aerial vehicles (UAV) [7], [8], mobile robots [9],
vessels and underwater systems [10], etc. One practically
important application of formation control is the spatial mon-
itoring of environmental boundaries, which is particularly
critical e.g., to sample the spread of oil and dangerous chemi-
cals during accidental spills [11], or to contain the boundaries
of wildfires [12], see Fig. 1. As these regions may possibly
be large in size, it is difficult to monitor them with a single
autonomous robot; The use of MAS can significantly improve
the efficiency of this task. Our goal in this paper is precisely
to develop controls for these types of evolving curve-based
formations.

A. Related Work

Formation control is one of the most popular control
problems in MAS (see [4] for a comprehensive review).
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State-of-the-art methods include [13], which proposes a
position-based controller for vehicles subject to second-
order dynamics; [14] proposes a similar position-based strat-
egy but for aerial vehicles. Representative examples of
displacement-based controllers include [15] which presents a
method to coordinate autonomous unmanned vehicles (AUVs)
with optical sensors, and [16] which studies the maneuvering
and robustness of undirected control topologies. Examples of
distance-based strategies are presented in [17] and [18] for var-
ious conditions and applications. There are some works on for-
mation tracking control, such as [9] and [19], yet, they mostly
focus on driving followers to track leaders’ trajectories rather
than driving agents to track evolving parametric boundaries.
Formations computed with standard position-based strategies
typically consist of discrete targets represented in abso-
lute coordinates. Those computed with displacement/distance-
based strategies do the control via relative inter-agent spatial
configurations. However, these approaches may not be the
most efficient way to distribute the agents along a boundary,
whose most natural representation is a parametric curve. In our
boundary-constrained formation problem, the agents must
align along this parametric curve and automatically distribute
according to the curve’s arc length, an objective that clearly
contrasts with that of traditional formation controls.

Various related works have addressed similar contour-based
scenarios. Some early examples include [20], which propose
contour-based controls for homogeneous AUVs to track pro-
files of plumes. However, these methods require gradient
measurements, which are difficult to obtain in practice. The
method in [21] adopts the idea of active contour models
from the image processing to compute a motion planner that
guides robots into boundaries. The algorithm in [22] uses
the advection-diffusion equation to model the dynamics of
plumes and to control a team of robots that monitor them. The
method in [23] describes a solution to estimate time-varying
boundaries with multiple robots. More examples can be found
in [24] and [25], where plume tracking and wildfire boundary
monitoring with MAS are studied. Most previous works in the
literature mainly focus on detecting/estimating the boundaries,
do not exploit the properties of parametric curves in their
design, have not considered the situation in which robots
interact with switching topologies. Furthermore, they mostly
focus on theoretical analysis, and very few conduct real-world
experiments to verify the proposed methodology. The aim of
this paper is to fill these gaps in the literature.

B. Our Contribution

In this paper, we propose a new control method to
autonomously align a network of agents into an evolving
parametric curve while keeping a desired arc length separation
among them. The curve is represented with truncated Fourier
series, whose “feedback coefficients” are used to establish a
shape control loop. The main contributions of our work are
summarized as follows:

1) A new representation of formation tasks with homoge-
neous MAS based on finite Fourier coefficients.

2) A new formation controller that explicitly uses Fourier
coefficients to drive the agents towards the desired curve
under fixed and switching topologies.

3) A rigorous stability analysis, numerical simulation and
experimental study to investigate the properties and vali-
date the performance of the proposed method.

Compared with existing works, our approach doesn’t require
explicit position targets for the agents. Instead, our proposed
control method defines the formation in terms of a parametric
curve (which can be simply obtained from an image) and
drives the robots towards this target shape based on errors of
Fourier coefficients (this represents a new type of servo-loop
for formation control tasks).

C. Notation

Matrices and vectors are denoted as bold capital and small
letters, respectively, e.g., M and m. We use [M]i j to denote
the i th row j th column entry of a matrix M, and [m]i to
denote the i th element of a vector. I denotes the identity matrix
of appropriate dimension and 0m×n is the m × n matrix of
zeros. We use λmin(M) to denote the minimum eigenvalue of
a matrix M.

D. Organization

The remainder of this paper is organized as follows.
Section II models the parametric curves. Section III derives
the proposed formation controller. Section IV presents the
conducted simulation and experimental results. Section V
provides final conclusions.

II. CURVE REPRESENTATION

A. The Observed Boundary

Our interest in this paper is to study formation con-
trol strategies to drive agents toward closed planar curves.
Therefore, the first step is to obtain the reference boundary.
In actual missions, boundaries could be predefined or obtained
from top-view images of a scene. Without loss of generality,
we assume that these boundaries can be characterized as a
time-dependent parametric equation of the form [26]:

c(s, t) = [cx (s, t), cy(s, t)]T ∈ R2 (1)

for s ∈ [0, 1] as the nondimensional parameter, and t as the
time variable. cx (s, t) and cy(s, t) are the 2D position coordi-
nates of a point along this curve assumed to be measurable.
Since the curve is closed, it satisfies c(0, t) = c(1, t).

B. Curve Approximation

An intuitive way to automatically drive the agents and
distribute them uniformly along the boundary of interest is to
parameterize it by its arc length [27]. However, a very accurate
characterization of the observed contour (1) may require a
large number of frequency terms, which invariably leads to
complicated (and high dimensional) geometric representations.
To deal with this issue, in our method, we use an approxima-
tion of the curve, which we denote as c̃ for a new parameter
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Fig. 2. The conceptual process of the curve approximation.

s̃ ∈ [0, 1]. The approximation c̃ is obtained by fitting c with
the following truncated Fourier series.

c̃x =

H∑
h=1

[ah cos 2πhs̃ + bh sin 2πhs̃] + e

c̃y =

H∑
h=1

[ch cos 2πhs̃ + dh sin 2πhs̃] + f (2)

where H is the number of harmonics, and ah , bh , ch , dh , e,
f are the Fourier coefficients. The term c̃ = [c̃x , c̃y]

T denotes
the 2D coordinates of a point along the approximated curve.

The parameter s̃ is defined as the normalized arc length of
the observed curve (1), and it satisfies:

s̃ = l(s, t)/L(t) (3)

for L(t) > 0 as the time-varying perimeter of the curve
c, l(s, t) as the metric length of a curve section with the
parameter range of [0, s]. This approximation is depicted in
Fig. 2.

For convenience in further processing, we rewrite (2) as a
linear regression equation of the form:

c̃ = G(s̃)ξ (4)

where ξ = [ρ1, . . . , ρH , e, f ]
T

∈ R(4H+2)×1 denotes the
vector of parameters that characterize the curve, with ρh =

[ah, bh, ch, dh]
T (h = 1, . . . , H ) as the Fourier coefficients,

and [e, f ] as the offset. The regression-like matrix G(s̃) =

[g1, . . . , gH , I] ∈ R2×(4H+2) contains the harmonic terms, for

gh =

[
cos (2πhs̃) sin (2πhs̃) 0 0

0 0 cos (2πhs̃) sin (2πhs̃)

]
(5)

In (4), ξ is unknown and needs to be calculated. For that,
we sample discrete points along the observed curve and stack
them into a point sequence C ∈ R2N×1 of the form:

C = [cT
1 , . . . , cT

N ]
T (6)

where N > 0 is the total number of the sampled points.
For each point cp (p = 1 . . . N ) in (6), we can obtain an arc

length parameter s̃p by using (3), thus obtain a matrix G(s̃p).
We then stack these matrices into a similar sequence of the
form:

Gh = [G(s̃1)
T, . . . , G(s̃N )T

]
T. (7)

We calculate the Fourier coefficients by

ξ = (GT
h Gh)−1GT

h C. (8)

Note that the number of sample points along the curve must
satisfy N > 2H + 1 to guarantee the existence of (GT

h Gh)−1,
and thus, the boundedness of ξ .

III. FOURIER-BASED FORMATION CONTROL

A. Graph Theory

The topology of the interactions among agents can be
depicted by a graph, where agents are the nodes of the graph
and interactions are the edges of the graph. The graph is
denoted as G = (V, E, ai j ), where ai j are the weights of the
interactions with the subscript i j indicating the i-th and j-th
agents, V = {1, 2, . . . , n} is the set of node indexes, n is the
amount of agents, and E = {(i, j) ∈ V × V : ai j ̸= 0} denotes
the set of edges. Given a graph, it is called an undirected graph
if ai j = a j i , otherwise, it is a directed graph [4].

For a specific agent i in the multi-agent system, we denote
its neighbors by Ni = { j ∈ V : ai j ̸= 0}. The degree of agent
i is defined as the sum of weights of its neighbors, denoted by
di =

∑
j∈Ni

ai j . The interconnection of agents is established
by the Laplacian matrix L ∈ Rn×n , where

[L]i j =

{
di , if i = j
−ai j , if i ̸= j

(9)

ai j > 0 if j ∈ Ni and ai j = 0 otherwise [28].

B. Controller Design

The agents considered in this work are assumed to conduct
planar motions and have nonholonomic dynamics. We use
[xT

i , θi ]
T to describe the configuration of agent i , where xi =

[xi , yi ]
T and θi denote the center position and the orientation

of agent, respectively. The dynamic model of agent i is given
by [29]: ẋi

ẏi
θ̇i

 =

cos θi 0
sin θi 0

0 1

ui (10)

where ui = [vi , ωi ]
T represents the control input, with vi

and ωi as the linear and angular velocities of the agent,
respectively.

A common practice for the control of nonholonomic dynam-
ics is to use the input/output feedback linearization [30], where
a virtual control point is introduced to change the coordinates
to simplify the control objective and stability analysis. The
virtual control point is given by [31]:

x̄i := x + ℓ cos θi

ȳi := y + ℓ sin θi

θ̄i := θi

(11)

for an arbitrary scalar distance ℓ > 0 that translates the agent’s
position to an arbitrary close location, see Fig. 3(a).

By using these new coordinates, we can construct the state
vector x̄i = [x̄i , ȳi ]

T, whose time derivative yields a modified
dynamic model of the form:{

˙̄xi = Ri (θi )ui
˙̄θi = ωi

(12)
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Fig. 3. (a) The change of coordinates; (b) Assigning arc length parameter
to agents.

for a full-rank matrix defined as:

Ri (θi ) =

[
cos θi −ℓ sin θi
sin θi ℓ cos θi

]
(13)

By defining a new control input ūi = Ri (θi )ui , the position
dynamics in (12) can be reduced to a single integrator ˙̄xi =

ūi . This enables us to represent the position dynamics of the
multi-agent system as follows:

˙̄x = ū (14)

for an extended position vector x̄ = [x̄T
1 , . . . , x̄T

n ]
T

∈ R2n×1

and an extended input ū = [ūT
1 , . . . , ūT

n ]
T

∈ R2n×1. The
control input of the original dynamics can be simply computed
as u = R−1ū, with a matrix R = diag(R1, . . . , Rn).

To ensure that the agents have an equal arc length separation
between neighboring agents along the curve, we uniformly
discretize the arc length parameter s̃ according to the number
of agents, that is, the discretization step is ds̃ = 1/n. Then,
we obtain a sequence of arc length parameters corresponding
to the distribution for each agent:

s̄ = [s̃1, . . . , s̃i , . . . , s̃n]
T (15)

where the i th length is calculated as s̃i = (i − 1)ds̃. The
assigning of arc length parameters is shown in Fig. 3(b).
Substituting the sequence s̄ into G(s̃), we similarly obtain the
sequence of harmonic matrices corresponding to each agent
as follows:

Ḡ = [G(s̃1)
T, . . . , G(s̃i )

T, . . . , G(s̃n)T
]
T. (16)

Problem Statement: By using the extended position x̄ and
matrix (16), we can define the agents’ position error:

x̄e = x̄ − Ḡξ (17)

and the curve’s coefficient error:

ξ e = Ḡ+x̄ − ξ (18)

where Ḡ+ denotes the pseudoinverse of Ḡ. The control objec-
tive is to design a Fourier-based feedback control input ū for
the dynamics (14) that ensures the tracking of an evolving
boundary c̃(t), i.e., the convergence of x̄e and ξ e as t → ∞,
with arbitrary initial conditions.

Remark 1: Note that the term Ḡξ can be interpreted as the
target positions of the agents along a curve. In our proposed
method, we codify the target shape in terms of frequency terms
(i.e., the Fourier coefficients) ξ , which can be obtained e.g.,
from an image contour.

Remark 2: The rationale of ensuring the convergence of
x̄i instead of xi . As is shown in Fig.3, we can always
ensure that the virtual control point is within the body of the
agent by appropriately selecting the distance ℓ. In that case,
the convergence of the virtual control point naturally means
the agent’s convergence to the tracked boundary. However,
it should be noted that ℓ can not be zero, otherwise, the
existence of the inverse matrix R−1 does not hold.

Since the interaction topology of the agents is represented
by a graph G with the Laplacian L, by combining (14) with
(16) we can design the following Fourier-based formation
controller to drive the agents towards the reference curve:

ūi = −k1
∑
j∈Ni

ai j
[
G(s̃i ) − G(s̃ j )

]
ξ e − k2[x̄i − G(s̃i )ξ ]

(19)

where k1, k2 > 0 are feedback control gains. The first term on
the right-hand side of (19) drives the agents to form the target
shape of the curve. The remaining terms compensate for the
relative distances between the agents and the reference curve.

C. Stability Analysis

We can rewrite the controller (19) and express it as the
control input ū for the whole multi-agent system:

ū = −k1L̄Ḡξ e − k2(x̄ − Ḡξ) (20)

where L̄ = L ⊗ I is the extended Laplacian matrix, and ⊗

denotes the Kronecker product. The stability analysis of the
proposed controller is based on the following assumptions:

Assumption 1: The graph G that captures the interaction
topology of the multi-agent system is strongly connected and
undirected [2].

Assumption 2: The rank of the matrix Ḡ ∈ R2n×(4H+2)

must always satisfy rank(Ḡ) = min{2n, 4H + 2}.
Assumption 3: As the observed curve evolves, the approxi-

mated curve is updated with a constant sampling period using
the processes described in Sec. II-B. The observed curve
evolves at a slow speed such that we can regard the coefficients
ξ as constant during the sampling period.

With Assumption 1, we ensure that the Laplacian of the
graph G is symmetric positive semi-definite, i.e. the eigen-
values of L are all non-negative. According to the property
of the eigenvalues of a Kronecker product (see Theorem
4.2.12 in [32]), we can obtain the eigenvalues of L̄ are all
non-negative as well, i.e., L̄ is positive semi-definite.

With Assumption 2, we know that when the number of
agents n ≥ 2H+1, Ḡ is full column rank and its pseudoinverse
is calculated by Ḡ+

= (ḠTḠ)−1ḠT. When the number of
agents n < 2H + 1, Ḡ is full row rank and its pseudoinverse
is calculated by Ḡ+

= ḠT(ḠḠT)−1 [33].
Based on Assumption 3, we separate the stability analysis

into two parts. First, the stability of the controller is analyzed
with time-invariant curves (i.e., set-point regulation). Then, the
analysis is extended to tracking evolving curves.

According to the relationship between the number of agents
and the number of harmonics, we separate the analysis with
time-invariant curves into “many” agents case (n ≥ 2H + 1)
and “few” agents case (n < 2H + 1).
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Proposition 1 (“Many” Agents Case): Consider a MAS
composed of n agents with dynamics (14) and a strongly
connected interaction topology G. Given a time-invariant curve
(4), the controller (20) ensures the asymptotic stability of the
position and Fourier coefficients errors x̄e and ξ e, when the
number of agents is n ≥ 2H +1 and the control gain k satisfies 0 <

k1

k2
< −

2
3

, if 3 < 0

k1, k2 > 0, if 3 ≥ 0
(21)

for 3 = λmin
(
L̄ḠḠ+

+ ḠḠ+L̄
)
.

Proof: The proof contains two steps. First, we prove the
convergence of x̄e. By computing the derivative of x̄e we
obtain the following relations:

˙̄xe = ˙̄x
= −k1L̄Ḡξ e − k2x̄e

= −k1L̄ḠḠ+x̄e − k2x̄e

= −F1x̄e (22)

where F1 = k1L̄ḠḠ+
+ k2I, which is non-symmetric. Now,

let us consider the following symmetric matrix:

F1 + FT
1 = k1

(
L̄ḠḠ+

+ ḠḠ+L̄
)
+ 2k2I (23)

It can be seen that both items on the right side of (23) are
symmetric matrices. According to the Theorem 4.3.1 in [34],
we know that the eigenvalues of F1 + FT

1 satisfy the bound:

λmin(F1 + FT
1 ) ≥ k13 + 2k2. (24)

We can see that λmin(F1+FT
1 ) > 0 when k satisfies (21), which

implies that all the eigenvalues of (F1 + FT
1 )/2 are positive,

thus, ensuring that F1 is positive definite. The solution to the
closed-loop dynamic system (22) with initial condition x̄e(0)

can be computed as follows:

x̄e(t) = e−F1t x̄e(0). (25)

which shows that the position error of the agents is asymptot-
ically minimized, i.e., x̄e → 0 as t → ∞.

The second part analyzes the convergence of the Fourier
coefficients error ξ e, which drives the curve-aligning actions
in the controller (20). Note that since n ≥ 2H + 1, the
pseudo-inverse of Ḡ is computed as Ḡ+

= (ḠTḠ)−1ḠT.
By using (18) and (17), we obtain the following:

ξ e = Ḡ+x̄e + (Ḡ+Ḡ − I)ξ = Ḡ+x̄e. (26)

As Ḡ+ has a full row rank, x̄e → 0 implies that ξ e → 0.
Proposition 2 (“Few” Agents Case): Consider a MAS

with n agents, dynamics (14) and strongly connected
topology G. Given a time-invariant curve (4), the controller
(20) ensures the asymptotic stability of x̄e and the boundedness
of ξ e, when n < 2H + 1.

Proof: As Ḡ+
= ḠT(ḠḠT)−1, the closed-loop system

satisfies the following:

˙̄xe = ˙̄x
= −k1L̄Ḡξ e − k2x̄e

= −k1L̄x̄e − k2x̄e

= −F2x̄e (27)

for a positive definite and symmetric matrix F2 = k1L̄+k2I >

0. The solution of (27) is

x̄e(t) = e−F2t x̄e(0). (28)

which proves the asymptotic stability of x̄e. To prove the
boundedness of the Fourier coefficients error ξ e, we use (17)
and (18) to obtain the relation:

ξ e = Ḡ+x̄e + (Ḡ+Ḡ − I)ξ (29)

where by using (28), we can show that

lim
t→∞

ξ e = (Ḡ+Ḡ − I)ξ . (30)

This expression implies the boundedness of ξ e, since ξ is
constant for time-invariant curves.

Remark 3: Proposition 1 proves that both x̄e and ξ e asymp-
totically converge to 0, which implies that ū → 0 as t → ∞

(i.e., zero motion at the equilibrium). Proposition 2 proves
asymptotic stability of the linear position error x̄e but can
only prove boundedness of ξ e. By substituting (30) into (20),
we obtain

lim
t→∞

ū = −k1L̄ Ḡ(Ḡ+Ḡ − I)︸ ︷︷ ︸
0

ξ = 0. (31)

Considering u = R−1ū and since ui = [vi , ωi ]
T, we can derive

the following zero dynamics of orientation:

θ̇i = 0 (32)

which shows that the agents’ orientation converges to bounded
constant solutions.

Remark 4: Note that static curves have constant Fourier
coefficients. However, these coefficients are time-varying
for evolving curves. Therefore, further analysis should be
employed to analyze the stability of our controller in this
situation.

Next, we show that the tracking position error vector x̄e is
bounded on the basis of Propositions 1 and 2. We have shown
the processes of approximation of the observed curve by the
arc length at a specific time instant in Sec. II-B. The analysis
of the tracking errors is based on the Assumption 3.

Before turning to the main analysis, we define several key
terms useful for the theory’s presentation. Let us denote the
sampling period as 1t and the Fourier coefficients of the q-th
sampling period as ξq . We denote the difference of the Fourier
coefficients of two neighboring sampling periods as 1ξq ,
calculated by ξq − ξq+1, express a sequence of coefficients
differences with the following form:

{∥Ḡ1ξ1∥, . . . , ∥Ḡ1ξq∥}. (33)

The maximum of (33) is denoted as ∥Ḡ1ξ∥max. To simplify
notation, we introduce the matrix F̄ ∈ {F1, F2}, and denote its
minimum eigenvalue as ε = λmin(F̄).

Proposition 3 (Evolving Curves): Consider a MAS with n
agents, dynamics (14) and strongly connected topology G.
Given a time-varying curve, the controller (20) ensures the
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boundedness of the position tracking error ∥x̄e∥ by the positive
constant

M =
1

1 − e−ε1t ∥Ḡ1ξ∥max > 0 (34)

if the sampling period and the initial error satisfy the following
condition:

1t ≥ −
1
ε

ln

(
1 −

∥Ḡ1ξ∥max

∥x̄e(0)∥

)
, (35)

Proof: The detailed proof is given in Appendix A.
Remark 5: Condition (35) points out that the sampling

period can not be too small if we want to ensure the con-
vergence of tracking errors. It can be derived from (34) that
M can reach infinity if we select a very small 1t . Note that the
existence of the natural logarithm in (35) requires ∥x̄e(0)∥ >

∥Ḡ1ξ∥max, which is generally easy to be guaranteed since we
have made the slow motion assumption to the curve.

D. Switching Topology

In real-world applications, the communication among agents
is usually limited by their relative distance from each other;
This means that an agent can only communicate its state with
agents within its local neighborhood. Network disruptions,
such as unexpected hardware errors and poor signal intensity,
can also cause communication failures. In this situation, the
multi-agent system is said to interact through a switching
topology. The aim of this section is to show that the proposed
controller (20) is capable of handling switching topologies.

The presented analysis depends on the extension of
Assumptions 1 and 2 in Sec. III-C. When communication
failures occur, agents are divided into several subgroups where
local communication is preserved. For that, our method relies
on the following assumption:

Assumption 4: All the interaction topologies within the
subgroups that have more than one agent can be represented
by strongly connected and undirected graphs.

We denote the set of all possible graphs as

G̃ = {G = (V, E, ai j )}. (36)

Note that the set G̃ is finite because the number of agents is
also finite.

Proposition 4: Considering Assumption 4, the conclusions
from Propositions 1 and 2 still hold for a multi-agent system
interacting through switching topologies.

Proof: With a switch topology, the matrix L̄ is not
necessarily the Kronecker product of the Laplacian and iden-
tity matrices. However, we can always transform L̄ into the
following form:

L̄t =


L1 ⊗ I · · · 0 0

...
. . .

...
...

0 · · · Lα ⊗ I 0
0 · · · 0 I

 (37)

where L1, . . . , Lα denote the Laplacians of the interaction
graphs of the subgroups, and α is the number of subgroups
that contain more than one agent. The identity matrix in L̄t

(i.e., the last term in the block diagonal) represents the isolated
agents that do not interact with other agents.

From the aforementioned assumptions, we know that the
matrices L1, . . . , Lα are symmetric and positive semi-definite,
therefore, L̄t is symmetric and positive semi-definite. This
condition on L̄t enables us to directly follow the proofs of
Propositions 1 and 2.

Proposition 5: Considering Assumption 3, a multi-agent
system with switching topology and driven by the controller
(20) can track an evolving curve with bounded position
tracking errors.

Proof: According to the proof of Proposition 4, we can
find a symmetric and positive semi-definite L̄t for a switching
topology. Accordingly, we can also obtain a positive definite
matrix similar to F1 or F2. Denote the matrix as F3, then we
can define the minimum eigenvalues ε = λmin(F3). Follow the
procedure of the proof of Proposition 3, then we can prove
Proposition 5.

IV. RESULTS

A. Simulation Setup

1) The Observed Curve: We select a curve that evolves
in terms of both its shape and the location of its center.
We represent the observed curve c(s, t) by the following
time-varying parametric equations:

cx (s, t) = 0.01[4t + (t sin 4πs + 800) cos 2πs]

cy(s, t) = 0.01[4t + (t cos 4πs + 800) sin 2πs] (38)

The curve starts as a circle and gradually evolves into a
parallelogram-like shape.

2) Calculation of the Curve: We sample the points along
the curve on a constant parameter step basis. Specifically,
we set the constant parameter step as δs = 0.001, therefore,
we collect N = 1001 sampled points

The metric length of each curve section can be computed
by the following curve integral [35]

l(sp, t) =

∫ sp

0

√(
∂cx (s, t)

∂s

)2

+

(
∂cy(s, t)

∂s

)2

ds (39)

where sp = (p − 1)δs. Note that the analytical computation
of (39) usually is difficult. Therefore, in this study, we numer-
ically compute the curve lengths by approximating (39) to:

l(sp, t) ≈

p∑
κ=2

∥c(sκ , t) − c(sκ , t)∥. (40)

To approximate the observed curve, we set the number of
harmonics to H = 6, which provides a compact shape feature
vector ξ .

3) Formation Control: We perform two types of control
tests. In the first, the agents interact with each other through
a fixed topology. The interaction topology is established fol-
lowing the rules that the agent i connects to the agent i − 2,
i − 1, i + 1, and i + 2. The weights of all interactions are set
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Fig. 4. Fixed topologies: (a) Interaction topology for n ≥ 2H + 1;
(b) Interaction topology for n < 2H + 1.

to ai j = 1. Therefore, the Laplacian of the MAS is:

[L]i j =


−1, j ∈ Ni

4, j = i
0, otherwise.

(41)

In the second type of test, the agents interact with each
other through a switching topology. The interaction topology
switches among three modes: (1) all agents interact with their
neighbors; (2) some agents interact with each other; (3) none
of the agents interact with each other.

The duration of the control test is set to 200 seconds, the
sampling period is 1t = 0.1 seconds, and the feedback gain
of the controller is empirically set to k1 = 2 and k2 = 1.
We set the distance ℓ as 0.01 m. The agents’ positions and
orientations at the beginning of each test are set as random
values.

In the following sections, we present and analyze some
representative simulation results to illustrate the validity of
the proposed method. The readers are also referred to the
supplementary video (https://vimeo.com/809466573) to check
more simulation results.

B. Fixed Topology

1) n ≥ 2H+1: We set the number of agents to n = 15 to
ensure n ≥ 2H +1 in this simulation. The interaction topology
of the multi-agent system is shown in Fig. 4(a). It can be
calculated that 3 ≈ −2.6822 × 10−15, therefore, the selected
gains satisfy the condition in (21). The minimum sampling
period is 3.4364×10−4 sec. computed by (35). Therefore, the
selected sampling period for the simulation is feasible.

The formation results and the evolution of errors are shown
in Fig. 5. As shown in Fig. 5, the approximated curve obtained
by (8) fits the observed curve well during the simulation; The
agents successfully form the desired curve shape and track the
evolving curve under the effects of the proposed formation
controller. We record the norm of coefficient errors ∥ξ e∥ in
Fig. 5(d) and the norm of position errors ∥xe∥ in Fig. 5(e).
As is shown, the errors rapidly converge at the beginning
stage and remain bounded at the stable stage. We also record
the evolution of agents’ orientations in Fig. 5(f). It can be
seen that the orientations of all agents are bounded when
the simulation reaches the stable stage, which meets the
conclusion of Remark 3. The results in both figures follow
Propositions 1 and 3, which illustrate the validity of the
proposed controller.

Fig. 5. Simulation results of 15 agents with fixed topology: (a) t = 0 s;
(b) t = 100 s; (c) t = 200 s; (d) evolution of ∥ξe∥; (e) evolution of ∥X̄e∥;
(f) evolution of agents’ orientations.

Fig. 6. Simulation results of 8 agents with fixed topology: (a) t = 0 s;
(b) t = 100 s; (c) t = 200 s; (d) evolution of ξm ; (e) evolution of ∥X̄e∥;
(f) evolution of agents’ orientations.

2) n < 2H+1: We set the number of agents to n = 8 to
ensure n < 2H + 1 in this simulation. The interaction
topology of the multi-agent system is shown in Fig. 4(b). It can
be calculated by (35) that the minimum sampling period is
3.4013 × 10−4 sec. Therefore, the selected sampling period
for the simulation is feasible.

The formation control results are shown in Fig. 6(a)-(c).
We can see that the agents successfully form the desired shape
and track the evolving curve under the effects of the proposed
controller. The evolution of errors and orientations are shown
in Fig. 6(d)-(f). As shown in Proposition 2, the coefficient
errors ξ e converge to a limit with the form of (30). For that,
we define the following coefficient error metric

ξm =
∥∥ξ e − (Ḡ+Ḡ − I)ξ

∥∥ (42)

whose evolution during the task can be seen in Fig. 6(d). The
metric ξm converges to zero as the simulation runs, which
agrees with the conclusion of Proposition 2. The norm of
position errors shown in Fig. 6(e) converge at the beginning
stage and remain bounded as the simulation runs, as proved
in Proposition 3. The orientations of agents are shown in
Fig. 6(f). We can see that all agents have bounded orientations
at the stable stage, which follows the conclusion of Remark 3.

C. Switching Topology

We set the number of agents to n = 15. The interaction
topologies of the multi-agent system are shown in Fig. 7.
As mentioned in Sec. IV-A.3, the interaction topology switches
among three modes during the simulation. The agents interact
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Fig. 7. Switching topologies: (a) the topology for 0 s ≤ t ≤ 70 s; (b) the
topology for 70 s < t ≤ 140 s; (c) the topology for 140 s < t ≤ 200 s.

Fig. 8. Simulation results of 15 agents with switching topology: (a) t = 0 s;
(b) t = 100 s; (c) t = 200 s; (d) evolution of ∥ξe∥; (e) evolution of ∥X̄e∥;
(f) evolution of agents’ orientations.

with each other through the same topology as the simulation
in Sec. IV-B.1 until 70 sec, then turn to the topology shown
in Fig. 7(b) during 70 sec to 140 sec, and finally turn to the
topology shown in Fig. 7(c) after 140 sec. It can be calculated
by (35) that the minimum sampling period is 3.4364 × 10−4

sec. Therefore, the selected sampling period for the simulation
is feasible.

The formation control results and the evolution of errors
are shown in Fig. 8. As shown in Fig. 8, the agents present
similar performance compared with the results in Sec. IV-B.1.
As for the evolution of errors, we can see from Fig. 8(d)
and Fig. 8(e) that both the norm of coefficient errors and
the absolute norm of errors rapidly converge at the beginning
stage and remain bounded at the stable stage despite of sudden
changes of topology. The orientations of all agents also follow
the conclusion of Remark 3. The results in both figures follow
Propositions 4 and 5, which illustrate the validity of the
proposed controller in dealing with switching topologies.

D. Experimental Validation

1) Setup: In addition to numerical simulations, we con-
ducted some experiments to verify the performance of the
proposed method in a real-world task. These experiments
are conducted with the platform shown in Fig. 9, which is
composed of nine (n = 9) Mona robots [36] with nonholo-
nomic dynamics, a top-view camera to monitor the robots
and obtain the feedback pose of the robots, a control PC to
collect feedback data and send the motion commands. Wi-Fi
communication (at a rate of 10 Hz) between the control PC
and robots is built based on ROS. We conduct all experiments
in an arena with a size of 1.8m × 0.8m.

In all experiments, the robots interact through a fixed topol-
ogy, which is established following the same rule presented

in Sec. IV-A.3. We empirically set the controller’s gains to
k1 =

2
3 and k2 = 2. Various representative results are presented

in the following sections, yet, more experiments can be found
in the supplementary video at https://vimeo.com/809466573.

2) n ≥ 2H + 1: In this experiment, we drive the robots to
track an evolving ellipse whose size is growing over time. The
equation of the observed curve is:

cx (s, t) = 0.0015[200(1 + 0.01t) cos 2πs + 3t + 400]

cy(s, t) = 0.0015[100(1 + 0.01t) sin 2πs + 300] (43)

At the beginning of the experiments, all robots have ran-
dom initial positions and orientations. We set the number
of harmonics in the curve approximation to H = 3 so that
n ≥ 2H + 1 is ensured. It can be calculated that 3 =

−8.8818e×10−16. Therefore, the selected control gains satisfy
the condition in (21). As the minimum sampling period is
1.8 × 10−3 seconds (which is computed by (35)), the selected
communication frequency is appropriate for the system.

Fig. 10 shows the results of this experiment. Fig. 10(a)
depicts various screenshots of the robots during their motion,
where we can see how they start from random initial conditions
and gradually form the desired evolving shape while keeping
track of it. The evolution of the coefficients errors, position
errors, and orientations are shown in Fig. 10(b)-(d). From these
plots, we can see the asymptotic properties and boundedness
of the errors, which follow Proposition 1 and 3. Orientations
also reach some bounded values at the stable stage of the
experiment, which follows the conclusion of Remark 3.

3) n < 2H + 1: In this experiment, we drive the robots
to track an evolving curve similar to (38). The curve starts
from a circle, then gradually evolves into a parallelogram-like
shape. The equation of the observed curve is:

cx (s, t) = 0.0015[(0.5t ∗ sin 4πs+200) cos 2πs+3t+300]

cy(s, t) = 0.0015[(0.5t ∗ cos 4πs+200) sin 2πs+300] (44)

In this case, the number of harmonics is set to H = 6 to
ensure n < 2H + 1. At the beginning of the experiment, all
robots have random initial positions and orientations. As the
minimum sampling period is 8.2674 × 10−4 seconds (which
is computed by (35)), the selected communication frequency
is appropriate for the system.

Fig. 11(a) depicts various screenshots of the robots during
the experiment. The evolution of the coefficients error, position
errors, and orientations are in Fig. 11(b)-(d). These plots
similarly show the asymptotic properties and boundedness
of the errors. We can also see that all agents have bounded
orientations at the stable stage of the experiment, which agrees
with the conclusion from Remark 3.

E. Discussion

1) Slow Motion: In the previous analysis, we have made
the slow-moving assumption to the curve. In this section,
we discuss the influence brought by this assumption. For that,
we introduce a speed ratio to evaluate the moving speed of
the curve, defined as r = vc/vmax, where vc denotes the
moving speed of the curve and vmax denotes the maximum
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Fig. 9. The setup of experiments: (a) the configuration of the platform;
(b) the Mona robot.

Fig. 10. Experiment results of 9 agents with fixed topology: (a) screenshots
of experiment result (b) evolution of ∥ξe∥; (c) evolution of ∥X̄e∥; (d) evolution
of agents’ orientations.

Fig. 11. Experiment results of 9 agents with fixed topology: (a) screenshots
of experiment result (b) evolution of ∥ξe∥; (c) evolution of ∥X̄e∥; (d) evolution
of agents’ orientations.

linear velocity of the agent. It can be derived that r = 0 if we
don’t limit the linear velocity of agents.

Quantitatively measuring the moving speed of a curve is
usually difficult. Therefore, instead of adjusting the curve,
we set different limitations on the linear velocity of agents
to examine the influence of different speed ratios. The results
are shown in Table I. The settings of the simulations are
the same as Sec. IV-B.1 except for the agents’ maximum
linear velocity and that agents set off from the same straight
line with the same initial orientations. We set five different
vmax for the agents and record the norm of the position
errors ∥x̄e∥ at five different time instances. Table I shows the
convergence speed of ∥x̄e∥ decreases as vmax also decreases.
When vmax = 0.1 m/s, the duration of the simulation is not
enough for the MAS to reach the curve. Fig. 12 shows the
slow convergence of ∥x̄e∥ with vmax = 0.1 m/s.

TABLE I
EVOLUTION OF ∥x̄e∥ UNDER DIFFERENT SPEED RATIOS

Fig. 12. Simulation results of 15 agents with vmax = 0.1 m/s: (a) t = 0 s;
(b) t = 100 s; (c) t = 200 s; (d) evolution of ∥ξe∥; (e) evolution of ∥X̄e∥;
(f) evolution of agents’ orientations.

V. CONCLUSION

In this paper, we study the problem of tracking evolv-
ing parametric curves with multiple homogeneous agents.
We approximate the observed curve as a Fourier series with
arc length parameters, which ensures uniform inter-agent arc
length separations. Then, a Fourier-based formation controller
is designed to drive the agents to form and track the desired
curves. We present a detailed stability analysis of the proposed
formation controller and conduct simulations under fixed and
switching topologies. Simulation and experiment results show
that the proposed controller can drive the agents to form
and track the desired curve under both fixed and switching
topologies. We also discuss the influence of initial conditions
and agents’ maximum linear velocity on the performance of
the proposed method.

However, the proposed method has various limitations.
On the one hand, we have not considered collision avoidance
between agents in this paper, which is important in real-world
practice. On the other hand, we have only studied agents with
nonholonomic dynamics. The formation control of agents with
more complex dynamics, such as general non-linear dynamics
or dynamics with disturbance [37], needs to be further studied.
Future work also includes the formation control with different
topology constraints, such as joint connected graphs and
directed graphs.

APPENDIX A
PROOF OF PROPOSITION 3

Proof: Let us consider the first sampling period. We denote
the position errors of the first sampling period as x̄1

e(t) for
t ∈ [0, δt]. It can be derived that x̄1

e(0) = x̄e(0). According to
(25) and (28), we can obtain

∥x̄1
e(1t)∥ = e−F̄1t

∥x̄e(0)∥ ≤ e−ε1t
∥x̄e(0)∥. (45)
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Note that x̄1
e(1t) is obtained based on the truth that we

regard ξ1 as constant during the sampling period. Therefore,
there is a difference between x̄1

e(1t) and the actual error. Since
the end of the first period is the beginning of the second period,
we know that the actual Fourier coefficients at the end of the
first period are ξ2. Note that x̄e = x̄ − Ḡξ , then we obtain the
actual errors at the end of the first period:

∥
a x̄1

e∥ = ∥x̄ − Ḡξ2∥

= ∥x̄ − Ḡξ1 + Ḡξ1 − Ḡξ2∥

≤ ∥x̄ − Ḡξ1∥ + ∥Ḡ(ξ1 − ξ2)∥

≤ e−ε1t
∥x̄e(0)∥ + ∥Ḡ1ξ1∥ (46)

where a x̄1
e denotes the actual error at the end of the first period.

The actual error at the end of the first period is also the
initial error of the second period i.e., x̄2

e(0) =
a x̄1

e . Similarly,
we can derive the actual error at the end of the second period:

∥
a x̄2

e∥ ≤ e−ε1t
∥x̄2

e(0)∥ + ∥Ḡ1ξ2∥

≤ e−2ε1t
∥x̄e(0)∥ + e−ε1t

∥Ḡ1ξ1∥

+ ∥Ḡ1ξ2∥. (47)

Accordingly, we can derive the actual error at the end of
the q-th period:

∥
a x̄q

e ∥ ≤ e−qε1t
∥x̄e(0)∥ + E (48)

where

E = e−(q−1)ε1t
∥Ḡ1ξ1∥

+ e−(q−2)ε1t
∥Ḡ1ξ2∥ + · · · + ∥Ḡ1ξq∥

≤ e−(q−1)ε1t
∥Ḡ1ξ∥max + · · · + ∥Ḡ1ξ∥max

=
1 − e−qε1t

1 − e−ε1t ∥Ḡ1ξ∥max. (49)

We can see that, as q → ∞ (i.e., t → ∞),

lim
q→∞

e−qε1t
∥x̄e(0)∥ = 0, (50)

E ≤
1

1 − e−ε1t ∥Ḡ1ξ∥max. (51)

Let M =
1

1−e−ε1t ∥Ḡ1ξ∥max, then we can derive that there
always exists a positive constant M such that

∥
a x̄q

e ∥ = ∥x̄ − Ḡξq+1∥ ≤ M (52)

holds as t → ∞, that is, the position errors x̄e are always
bounded as t → ∞. Considering the condition (35), we can
derive that M ≤ ∥x̄e(0)∥ always holds, which ensures the
decrease of the errors.
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