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Abstract—In this work, we propose a convex optimization-
based receding horizon control method for the station-keeping
control of halo orbit in Earth-Moon system. we leverage the
advantages of convex optimization and receding horizon control
and design the method under the high-fidelity ephemeris model,
making it feasible to actual mission. Simulation results show that
our method reaches low tracking errors and control consumption
and produces better performances than linear quadratic regula-
tion method.
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tion, receding horizon control.

I. INTRODUCTION

Since the success of the Chinese Queqiao mission [1] to the

halo orbit about the L2 libration point of Earth-Moon system,

halo orbit has drawn increasing attention from researchers. On

one hand, the Earth-Moon L2 point plays a key role in future

explorations to the far side of the Moon [2], and the nearby

halo orbits are ideal mission orbits for the probes; On the other

hand, halo orbits exist in every three-body system, and some

of them are attractive for specific deep space missions. For

example, halo orbits nearby Sun-Earth L1 point are ideal for

exploring the Sun [3]; Sun-Earth L2 point is an ideal location

for space telescopes [4].

However, due to the instability of collinear libration points,

halo orbits are unstable. Therefore, employing station-keeping

control to maintain the spacecraft on the mission orbit is

necessary in actual missions. In the past decades, researchers

have done abundant work on the station-keeping control of

halo orbit. Breakwell [5] firstly introduced linear quadratic reg-

ulation (LQR) to the station-keeping control of halo orbit, but

they only tested the method in the simplified dynamical model,

which is not feasible for actual mission. Howell and their

group [6]–[8] have done plenty of work on the target shooting

method for station-keeping. Misra [9] proposed a polynomial

optimization-based model predictive control method for the

station-keeping control of halo orbit, but they also only tested

the method in simplified model and the optimization can’t be

solved in real-time since the computation load is heavy with a

large prediction horizon. In our previous work [10], [11], we

proposed a characteristic-model based adaptive control method

for the station-keeping control; This method can reach a pretty

high precision in tracking errors, but the control consumption

is too high.

By reviewing the past literature, we conclude that a feasible

station-keeping control method should be: 1) efficiency in

computation; 2) able to reach high precision with low control

consumption; 3) verified in high-fidelity dynamical model. In

this work, we propose a convex optimization-based receding

horizon control (RHC) method for the station-keeping of

halo orbit in real Earth-Moon system. On one hand, convex

optimization problem has some good properties [12], such

as low complexity and guarantee on the convergence to an

optimal. On the other hand, RHC converts the infinite horizon

optimization to finite horizon optimization and introduces

feedback to the open-looped optimization, thus makes the

whole method robuster to uncertainties [13]. We combine

the advantages of convex optimization and RHC and design

the method under ephemeris model. Therefore, the proposed

method is feasible for actual missions.

The remaining of the paper is organized as following:

section II presents the dynamical models and the computation

of reference orbit; section III gives the design of the proposed

station-keeping control method; section IV presents the simu-

lation results and analysis; section V concludes this work.

II. DYNAMICAL MODELS AND REFERENCE ORBIT

In this work, we consider two types of dynamical models,

i.e. the circular restricted three-body problem (CRTBP) and

the ephemeris model, both of which are the foundations for

the construction of reference orbits and the controller design.

A. CRTBP

The CRTBP is a powerful tool for the analysis of the general

properties of libration points. It describes the motion of a

particle (i.e. the satellite in our case) with a very small mass

under the gravity of two massive primaries (i.e. Earth and

Moon in our case) that are in circular motion around the

common center of masses [14].
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For the convenience of analysis, The CRTBP is usually

studied in a synodic coordinate with nondimensionalized units

of mass, lenght and time:

[M ] = M1 +M2, [L] = L12, [T ] =

[
L12

3

G (M1 +M2)

] 1
2

(1)

where M1 and M2 denotes the masses of the primaries;

L12 denotes the mean distance between the primaries; G is

the gravitational constant. Using Eq. (1), the masses of the

primaries are nondimensionalized as 1− μ for M1, and μ for

M2, respectively. μ = M2/ (M1 +M2) is the mass parameter.

For the Earth-Moon system, μ = 0.01215058561.

Fig. 1. Synodic coordinate

The synodic coordinate is shown in Fig.1, where M1 and

M2 (M1 ≥ M2) denote the primaries, respectively, and O is

their barycenter; m3 denotes the spacecraft; r, r1, and r2 are

vectors from O, M1, and M2 to m3, respectively.

Let [x, y, z]T denotes the nondimensionalized position vec-

tor of the spacecraft in synodic coordinate, the equations of

motion for spacecraft in CRTBP is depicted as [15]:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ẍ − 2ẏ =

∂Ω

∂x

ÿ + 2ẋ =
∂Ω

∂y

z̈ =
∂Ω

z

(2)

where ⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ω =

1

2

(
x2 + y2

)
+

1 − μ

r1
+

μ

r2

r1 = ‖r1‖ =
[
(x+ μ)2 + y2 + z2

] 1
2

r2 = ‖r2‖ =
[
(1 − x − μ)2 + y2 + z2

] 1
2

(3)

B. Ephemeris Model

As a simplfied model, the CRTBP is powerful for general

analysis, but not feasible for actual missions. To better simulate

the real dynamical environment, in this work, we introduce a

high-fidelity N-body ephemeris model using the JPL DE421

[16] planetary ephemerides. By using the instantaneous posi-

tions and velocities delivered from the DE421 ephemeris data

to construct the equations of motion, the ephemeris model

involves the lunar eccentricity and gravitational perturbations

from the Sun and other planets, thus more accurately simulates

the dynamical environment.

The ephemeris model is usually constructed in inertial space

rather than a rotation frame. In practice, it is more convenient

to study the motion of spacecraft relative to a central body.

The framework of the ephemeris model is illustrated in Fig.2.

Fig. 2. The ephemeris model relative to a central body.

In Fig.2, m denotes the spacecraft; Mc and Mi denote

the central body and other primaries, respectively; vector rc
denotes the position of the spacecraft respect to the central

body; vector rci represents the positions of other primaries

respect to the spacecraft and vector ri represents the locations

of other primaries relative to the central body. Note that vector

rc can be obtained instantaneously alongside the integration

of the equations of motion and vector ri can be delivered

directly from DE421, then vector rci can be computed by

rci = ri − rc. Now, the equations of motion for spacecraft

in the ephemeris model relative to a central body can be

constructed as:

r̈c = −GMc

r3c
rc +

N−2∑
i=1

GMi

(
rci
r3ci

− ri
r3i

)
(4)

where, rc = ‖rc‖, ri = ‖ri‖, and rci = ‖rci‖.

Considering that this work studies the station-keeping con-

trol of halo orbit in Earth-Moon system, it’s more convenient

for analysis to make the Moon as the central body. There-

fore, the ephemeris model constructed in the Moon-centered

J2000 coordinate will be used in the following analysis and

simulations.

C. Reference orbit

For the station-keeping control of halo orbit, a reference

orbit is usually constructed firstly, then the spacecraft is main-

tained at the neighborhood of the reference orbit. There are

abundant literatures on the construction of the reference orbit,

and multiple shooting method is a widely-used strategy. The

general idea of multiple shooting method is similar to the one

used for the numerical solution of boundary-value problems

[17]. Since the main focus in this work is the controller design

rather than the construction of reference orbit, we simply cite

the multiple shooting method proposed in Pavlak’s work [18]

to construct the reference orbit used in the simulations of this
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work. The processes of the construction of the reference orbit

in ephemeris model are summarized in Table I.

TABLE I
THE PROCESS OF CONSTRUCTING THE REFERENCE

ORBIT IN EPHEMERIS MODEL

Start
Step1 Select basic parameters of halo orbit.
Step2 Obtain the approximate initial value using three order approx-

imate solution of halo orbit.
Step3 Correct the approximate initial value using differential cor-

rection.
Step4 Converge the orbit in the CRTBP using fixed-time multiple

shooting method.
Step5 Select patch points on the orbit converged in the CRTBP;

dimensionalize the patch points and transit the patch points
to the Moon-centered J2000 coordinate.

Step6 Nondimensionalize the patch points and reconverge the orbit
in the ephemeris model using vary-time multiple shooting
method.

End

Fig. 3. Reference orbit in Moon-centered J2000 coordinate.

Fig. 4. Reference orbit in rotation coordinate.

In this work, we set the z-axis amplitude of the halo orbit

as Az = 6391.5km , and the orbit lasts 10 periods which

is about 148 days. The start time of the orbit is at UTC +8,

0:00, January 1st, 2019. Employing the processes shown in

Table I, we finally obtain the reference orbit used in later

simulations. Fig.3 shows the reference orbit in Moon-centered

J2000 coordinate and Fig.4 shows the same reference orbit in

synodic coordinate.

III. CONTROLLER DESIGN

For the convenience of the later analysis, we rewrite the

uncontrolled dynamical equations of the spacecraft as the

following compact form:

Ẋ = f (X) (5)

where⎧⎪⎪⎨⎪⎪⎩
X =

[
rTc ṙTc

]T
f (X) =

[
ṙc

−GMc

r3c
rc +

∑N−2
i=1 GMi

(
rci

r3ci
− ri

r3i

) ]
(6)

Let Xr denote the reference trajectory of the spacecraft, Xa

denote the actual trajectory of the spacecraft under control, we

can obtain {
Ẋr = f (Xr)

Ẋa = f (Xa) +Bu(t)
(7)

where {
u(t) =

[
u1(t) u2(t) u3(t)

]T
B =

[
03×3 I3×3

] (8)

u(t) is the control acceleration.

Denote ΔX = Xa−Xr as the state error of the spacecraft

and differentiate it, we have

ΔẊ = Ẋa − Ẋr

= f (Xa) − f (Xr) +Bu(t)
(9)

Linearizing Eq.(9) derives

ΔẊ(t) = A(t)ΔX(t) +Bu(t) (10)

where A(t) = ∂f(X)
∂X

∣∣∣
Xr

.

A. Convex Optimization

1) Optimal control problem: In order to use the convex

optimization to solve the station-keeping control problem of

halo orbit, we need firstly constuct it as an optimal control

problem. For the actual mission, it is important to maintain the

trade-off of tracking errors and fuel consumption. Therefore,

in this work, we choose the cost function of the optimization

as the following form:

J (ΔX(t),u(t), t) =

∫ tf

0

(
ΔXTQX + uTu

)
dt (11)

where Q is the weight matrix.

Now, we consider the constraints. In actual mission, the

thrust for station-keeping control should be constrained. There-

fore, we need to implement constraint to control input during

the optimization:

umin ≤ ‖u(t)‖ ≤ umax (12)

where umin, umax are the lower boundary and upper boundary

of control input, respectively, and umax > umin > 0.

Besides, considering the insertion errors are inevitable when
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the spacecraft enters the target orbit, we should implement

constraints to the initial value as well:

ΔX(0) = ΔX0 (13)

Combining Eq.(10), (11), (12), and (13), we can obtain the

following optimal control problem:

min J (ΔX(t),u(t), t) =

∫ tf

0

(
ΔXTQΔX + uTu

)
dt

S.t. ⎧⎪⎨⎪⎩
ΔẊ(t) = A(t)ΔX(t) +Bu(t)

umin ≤ ‖u(t)‖ ≤ umax

ΔX(0) = ΔX0

(14)

2) Convexification: Note that the input constraint in Eq.(14)

is a nonconvex constraint. To convert Eq.(14) to a convex

optimization problem, here we introduce a slack variable U(t)
to do the constraint convexification. U(t) and u(t) satisfy the

following second-order cone constraint:{
‖u(t)‖ ≤ U(t)

umin ≤ U(t) ≤ umax

(15)

After the convexification, Eq.(14) is converted to the fol-

lowing convex optimization problem:

min J (ΔX(t),u(t), t) =

∫ tf

0

(
ΔXTQΔX + U2

)
dt

S.t. ⎧⎪⎨⎪⎩
ΔẊ(t) = A(t)ΔX(t) +Bu(t)

‖u(t)‖ ≤ U(t);umin ≤ U(t) ≤ umax

ΔX(0) = ΔX0

(16)

3) Discretization: Problem Eq.(16) is an infinite-dimension

optimization problem, which is infeasible to numerically solve.

Therefore, we discretize Eq.(16) to convert it to a finite

parameter optimization problem.

Let [0, tf ] be the horizon of optimization and δt be the

sampling time, then the horizon can be discretize as a series

of time instants tk = kδt(k = 0, ..., N), where tf = Nδt.
Employing the zero-order hold discretization, Eq.(10) can be

discretized as

ΔXk = AkΔXk−1 +Bkuk (17)

where ΔXk = ΔX(tk), Δuk = Δu(tk), and⎧⎪⎨⎪⎩
Ak = eA(tk)δt

Bk =

∫ δt

0

eA(tk)(δt−s)B(tk)ds
(18)

Now, we obtain the final discrete convex optimization

problem:

min J (ΔXk,Uk, tk) =

N∑
k=0

(
ΔXT

kQΔXk + U2
k

)
S.t. ⎧⎪⎨⎪⎩

ΔXk = AkΔXk−1 +Bkuk, k = 1, ..., N

‖uk| ≤ Uk;umin ≤ Uk ≤ umax

ΔX(0) = ΔX0

(19)

B. Receding Horizon Control

For the receding horizon control, at every time instant,

we need to solve an optimization problem over a finite time

horizon to get the optimal control actions and employ the

first control action to the system. Let th = nδt denote the

time horizon and uk the optimal solution for the optimization

problem at time instant tk, the control action at tk is

uk = uk
0 , k = 0, ..., n (20)

In this work, at each time instant tk, we solve a convex

optimization problem having the form of Eq.(19) to get

the control action. The resulted convex optimization-based

receding horizon control law is shown in Algorithm 1.

Algorithm 1 Convex optimization-based receding horizon

control
Routine

k=0

while k < N do
1. Solve convex optimization:

min J
(
ΔXk

i ,U
k
i , t

k
i

)
=∑N

k=0

[(
ΔXT

i
k)TQΔXk

i +
(
Uk
i

)2]
S.t. ⎧⎪⎨⎪⎩

ΔXk
i = Ak

iΔXk
i−1 +Bk

i u
k
i , i = 1, .., n

‖uk
i ‖ ≤ Uk

i ;umin ≤ Uk
i ≤ umax

ΔXk
0 = ΔXk

2. Implement control action uk = uk
0

end while

IV. SIMULATIONS

To verify the validity of the proposed convex optimization-

based receding horizon control law, we implement simulation

using the reference orbit constructed in Section II-C. During

the simulation, the insertion errors, i.e. the initial value con-

straints, are set as ΔX0 =
[
ΔxT

0 ΔvT
0

]T
, where:{

Δx0 =
[
38.44km 38.44km 38.44km

]T
Δv0 =

[
0.1m/s 0.1m/s 0.1m/s

] (21)

Besides, the sampling time is set as δt = 0.01, time horizon

tp = 150δt, weight matix Q = diag(3, 3, 3, 3, 3, 3). The

convex optimization is solved though CVX, a package for

specifying and solving convex programs [19], [20].
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To better verify the validity of the proposed method, we

employ the LQR method as a comparison. The cost function

of LQR method is set as

J =
1

2

∫ ∞

0

(
ΔXTQ1ΔX + uTRu

)
dt (22)

where Q1 and R are weight matrices:

Q1 =

[
1.25I3×3 03×3

03×3 03×3

]
, R = I3×3 (23)

Fig. 5. The station-keeping results.

Fig. 6. The position errors.

Fig. 7. The velocity errors.

The simulation results are shown in Fig.5-8. As can be seen

in the graphs, the position errors and velocity errors converge

Fig. 8. The control accelerations.

to zero gradually under both methods, but LQR method has

a slightly faster convergence speed than our method. The

comparison of performance between the proposed method

and LQR at stable stage is shown in Table II. Obviously,

out proposed method out-performances the LQR method in

both position errors and velocity errors. This isn’t beyond

expectation as our method has smoother graphs at the stable

stage.

TABLE II
THE MEAN ERRORS AT STABLE STAGE

Items X-axis Y-axis Z-axis

Position errors (m)
Cvx+RHC 47.2590 30.1217 44.1854

LQR 1797.9 2186.6 827.7

Velocity errors (10−3m/s)
Cvx+RHC 0.1094 0.0695 0.0234

LQR 8.8 9.5 3.5

By integrating the control accelerations, we can obtain

the velocity increments demanded during the simulation, as

shown in Table III. Data in Table III show that the control

consumption of our method is slightly larger than that of

LQR method. However, when the simulation reaches the

stable stage, our method demands a far more lower control

consumption than LQR method. Combining the performances

in tracking errors and velocity increments, our method produce

better results than LQR method, thus verifies the validity of

the proposed method.

TABLE III
THE VELOCITY INCREMENTS

Items Velocity increments(m/s)

Total increments
Cvx+RHC 2.8756

LQR 2.8140

Stable stage average
Cvx+RHC 0.0021

LQR 0.1214

V. CONCLUSION

In this work, we propose a convex optimization-based reced-

ing horizon control law for the station-keeping control of halo

orbits about the Earth-Moon L2 libration point. Through the

simulations and comparisons with LQR method, we conclude

that the proposed method is feasible for the station-keeping
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control mission of halo orbit. The tracking errors are desirable

and the demanded control consumption is low, which give the

proposed method advantages in the actual missions.
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