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Abstract—Halo orbits about libration points are believed to 
be useful in future deep-space missions. In this work, a station-
keeping strategy based on characteristic model theory is 
proposed within the elliptic restricted three-body problem. A 
golden-section controller for velocity tracking and a PD 
controller for position tracking are designed respectively for the 
station-keeping control of halo orbit about the L1 point of the 
Sun-Earth system. The simulation shows that this strategy can 
reach a relatively high precision in station-keeping control, 
where the tracking errors are no more than 2508.8 m in position 
and 0.251 m/s in velocity. The velocity increment required 
during the stable stage is only 3.7873 m/s per period. 
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I. INTRODUCTION  
It is well known that there are five equilibrium points in 

the restricted three-body problem(RTBP), which are called 
libration points. Particularly, the three that locate on the line 
joining the two primaries are called collinear libration 
points[1]. These libration points have some good properties 
and are believed to potentially play an essential role in future 
deep space explorations. Firstly, there are various types of 
orbits about libration points, including periodic halo orbits and 
Lissajous orbits et al. [2], which provides a wide range of 
choices for different aims; secondly, according to the 
dynamics of three-body problem, when a satellite is located 
on a libration point, its relative position to the primaries will 
remain unchanged forever; thirdly, the locations of libration 
points in space will potentially bring advantages to particular 
missions, for example, Sun-Earth 1L point is an ideal location 
for observation of Sun’s activities[3], whereas orbits around 
Earth-Moon 2L point can serve as the mission orbit for 
satellites aiming at establishing a communication link 
between Earth and the far side of Moon[4]. During the past 
four decades, several missions using libration point orbits 
have been successfully launched, such as ISEE-3, SOHO, 
Genesis and Queqiao et al. [5]. All of these missions have 
gotten plenty of outcomes and proved the value of libration 
point orbits, especially halo orbits. 

Due to the instability of collinear libration points, orbits 
around them are unstable. In real mission, satellites, if not 
controlled, will deviate from the target libration point orbits 
rapidly. So maintenance control is necessary. Many 
researchers have been working on this problem, and different 
strategies have been developed. Howell and Pernicka[6] 
proposed a target shooting strategy for station-keeping control 
of halo orbits around Earth-Moon collinear libration points 
and applied it successfully to ARTEMIS mission. A H∞  
optimal control strategy for halo orbits was proposed by 

Kulkami[7] and simulation was done under Sun-Earth 1L
point circumstance. Xu[8] designed a robust adaptive strategy 
and applied it to the stationkeeping of halo orbit around Sun-
Earth 1L point as well. What’s more, three different strategies, 
which are time-varying LQR control, backstepping strategy, 
and feedback linearization, were studied by Nazari[9]. A 
comparison between the simulation results of those strategies 
showed that the backstepping strategy required the lowest 
controlling consumption. 

In this work, we studied the station-keeping control of halo 
orbits in the Sun-Earth system using a strategy based on the 
characteristic model. The characteristic model theory was first 
proposed by Wu Hong-xin in the 1980s. According to [10], 
characteristic model is constructed based on the object’s 
original dynamics but has a simplified form and an equivalent 
output if given the same input, thus making the design of 
controller easier to be done. Since the three-body problem is 
more complicated than two-body problem and has more 
complicated dynamics, using the characteristic model theory 
to obtain a simplified but equivalent dynamic will surely bring 
some advantages. In sections II, we firstly introduce the 
dynamics involved and calculate the reference trajectory; in 
section III, a golden-section controller and a PD controller are 
designed based on characteristic model; in section IV, we will 
give the simulation results of halo orbits around Sun-Earth 1L
point; in the final section, we will conclude our work and give 
the conclusion. 

II. DYNAMICAL MODEL AND REFERENCE TRAJECTORY 

A. Circular Restricted Three-Body Problem 
Circular restricted three-body problem(CRTBP) is an 

ideal simplification of RTBP. It describes the motion of a 
particle with a very small mass under the gravity of two 
massive primaries that are in circular motion around the 
common center of masses[1]. In this work, we choose Sun and 
Earth-Moon barycenter as two primaries, satellite as the 
particle. 

For the convenience of calculation, the CTRBP is usually 
studied under syzygy frame with normalized units of mass, 
length and time as follow:  
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where 1M and 2M denote the masses of Sun and Earth-Moon 
respectively, 12L denotes the average distance between Sun 
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and Earth-Moon barycenter, G denotes the universal 
gravitational constant.  

The syzygy frame is shown in Fig.1, where 3m  denotes 
the satellite; 1M and 2M  denote the primaries. The origin O  
locates at the mass center of the system, Ox points from 1M  
to 2M ; Oz  has the same direction with the angular 
momentum of the motion of 1M and 2M . r , 1r  and 2r are 
the vectors from O , 1M and 2M  to 3m . 

 
Fig. 1 Syzygy frame 

Let [ ]2 /M Mμ = , then we can get the normalized 
positions of primaries in the syzygy frame, which are 
( ), 0,0μ− and ( )1 ,0,0μ− respectively. In Sun-Earth/Moon 

system, 63.04036 10μ −×= . 

Let [ ]Tx y z denotes the coordinate of 3m  in syzygy 
frame, the equations of motion can be formulated as follow: 
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B. Elliptic Restricted Three-Body Problem 
In the CRTBP model, the eccentricity of the orbit of Earth 

and other perturbations was ignored, which is precise enough 
for analysis under ideal circumstances, but not enough for real 
task. Taking the eccentricity into account, we can get a more 
precise model, which is called the elliptic restricted three-body 
problem(ERTBP). In ERTBP, the definitions of coordinate 
axis are the same as CRTBP, but the orbit of the small primary 
complies with the two-body Keplerian motion.  

According to [11] and [12], considering the effect of solar 
radiation, the equations of motion can be formulated as 
follow: 
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where [ ]Tx y z denotes the coordinate of 3m ; W has the 
form as follow: 
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where e denotes the eccentricity; f denotes the true anomaly 
of the small primary. 

K  denotes the coefficient of reflectivity with a value 
between 0 and 2. S denotes the solar flux calculated through 
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where A and 3m  denote the cross-section area and the mass 
of the satellite respectively; 0S  denotes the solar flux over a 
unit area; c denotes the speed of light and 0r  is equal to 1 AU. 

C. Reference Trajectory 
A reference trajectory is the prerequisite for station-

keeping control. In this work, we choose a halo orbit about 
Sun-Earth/Moon 1L  point as the reference trajectory. Due to 
the nonlinear property of the dynamics of the three-body 
problem, the precise analytic solution of halo orbit cannot be 
obtained directly. It’s generally calculated through numerical 
integration of the dynamics. 

Richardson[13] derived a three order approximate 
analytic solution of halo orbits through Lindstedt-Poincare 
method, which is shown as follow: 
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  (7) 

where xA  and zA  denote the linearized amplitudes of halo 
orbit. The meanings of other parameters can be seen in [13]. 

Through (7), we can obtain the approximation of the 
initial value for numerical integration. To obtain a precise 
reference orbit of a years-long duration, we need firstly 
modify the approximate initial value by a differential 
correction strategy. Considering that halo orbit is 
symmetrical with respect to the xOz  plane in syzygy frame, 
we select the approximate initial value as 
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 [ ]0 0 0 00 0 0 TX x z y=   
then fix 0z  and adjust the value of 0x  and 0y to make the 
final value of dx  and dz close to zero gradually. The 
corrections can be obtained through the following equations: 

 [ ]41 45 0
21 25

61 65 00

1d d

d d

x x x
z z yy

δ Φ Φ δ
Φ Φ

δ Φ Φ δ
= −  

the meanings of the parameters can be seen in [14]. With the 
aforementioned strategy, we can obtain the modified initial 
value for numerical integration. 

However, the modified initial value is still not precise 
enough to obtain a long term reference orbit. If we integrate 
the dynamics with the modified initial value, the orbit will 
diverge within 2 period. Therefore, we use the first period of 
the integration as the baseline and employ the target shooting 
strategy to modify the reference halo orbit. The basic concept 
of target shooting is to minimize the following function: 
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to get a minimal minvΔ  for the modification of the halo orbit. 
In (8), Q , kR  and kT are weight matrixes; kp  and kv are the 
position and velocity errors of the satellite in the kth target, 
which are obtained through the following equations: 
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The meanings of the parameters can be seen in [12]. Substitute 
kp  and kv into (8) and let  

 0J
vΔ

∂ =
∂

  (10) 

then we can get minvΔ . 

Set 0.000735zA = and employ the aforementioned 
strategies, we can obtain a 2.5 years-long reference halo orbit 
shown in Fig. 2. 

 
Fig. 2 Modified reference halo orbit 

III. DESIGNING OF THE CONTROLLER 

Let [ ]Tx y z x y z=X , then (4) can be 
transformed into the following controlled form: 

 ( )F= +X X Bu   (11) 
where  
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u  is called the control acceleration. 

A. Golden-section Controller for Velocity Tracking 
Apparently, (11) is a MIMO system with three inputs and 

six outputs. However, according to [10], the construction of a 
characteristic model for a MIMO system requests the number 
of inputs to be equal to that of outputs, which means we can’t 
directly construct the characteristic model for full state. 
Therefore, we first construct the characteristic model for 
velocity tracking in this work. 

When the sampling period tΔ  fulfill some specific 
conditions, the characteristic model for velocity tracking can 
be depicted as the following output-decoupled two-order 
difference equations:  
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In (12), characteristic parameters, including ( )1 kF , 

( )2 kF , ( )0 kG  and ( )1 kG , are obtained through parameter 
recognition. Each loop of (12) can be written as follow: 
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where  
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Then, parameter recognition can be employed through the 
following least-squares method:  
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Based on the characteristic model shown in (12), we can 
design the golden-section controller as follow:  
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where ( )1
r kX is the expected output; ( )1 kX  is the real output 

and ( ) ( ) ( )1 1 1
rk k k= −Y X X ; ( )1̂ kF , ( )2

ˆ kF , ( )0
ˆ kG  and 

( )1
ˆ kG  are the parameter estimations; 1 0.382l = , 2 0.618l =  

are the golden-section numbers; ( )1 2 3, ,diag λ λ λ=  is a 
positive constant matrix. 

B. PD Controller for Position Tracking 
In the designing of the golden-section controller, we only 

took the velocity errors into account, but to fulfill a full-state 
control, we still need to get the position errors involved. 
Therefore, we designed the following PD controller for 
position tracking:  

 2 p d= +u u u   (16) 
In (16),  

 ( )2p p k=u K Y   (17) 

where ( )2 2 2
rk = −Y X X  and ( )1 2 3, ,p p p pdiag k k k=K  is a 

constant matrix. 2
rX  is the expected output and 2X  is the real 

output. 

du  is a logical differentiation with the following form:  
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where jc  and jN  are constants. 

Finally, we get the controller for the station-keeping 
control of halo orbit:  

 1 2= +u u u   (19) 

IV. SIMULATION RESULTS 
To verify the validity of the controller (19), we employed 

a simulation under the ERTBP model. The reference halo orbit 
we chose is the one shown in Fig.2, which locates at the 1L  
point of the Sun-Earth system and has an amplitude of 

0.000735zA =  equal to 110000 km. The period of the orbit is 
3.0597T = in normalized units, which is equal to 176.7829 

days. And the total simulation duration is 5 periods, which is 
about 2.5 years. 

Considering the inevitable orbit injection errors in real 
mission, we add an initial error to the initial value at the 
beginning of  the simulation, which is: 
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The parameters of solar radiation we set are as follow:  
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The sample period of the simulation is 0.001tΔ = . The 
simulation result is shown in Fig.3. 

 
Fig. 3 Station-keeping under ERTBP model 

The position errors, velocity errors, and control 
accelerations are shown in Fig. 4, Fig. 5 and Fig. 6. Through 
the error graphs, we can see that the position errors and 
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velocity errors decline to zero rapidly. At the stable stage, the 
average position errors are 699.3m , 2508.8m  and 133.8m ; 
the average velocity errors are 0.0031 /m s , 0.0251 /m s  and 
0.0007 /m s . 

 
Fig. 4 Position errors 

 
Fig. 5 Velocity errors 

 
Fig. 6 Control acceleration 

TABLE I.  VELOCITY INCREMENT ( /m s ) 

Items X-axis Y-axis Z-axis Total 

5 periods 52.3583 364.4248 22.0595 368.8271 

1st period 22.2206 299.3075 16.6149 300.5907 
Average 

in 1 stable 
period 

1.5862 3.4272 0.2866 3.7873 

 

Through Fig.6, we can know that the control 
acceleration reaches its peak at the beginning, then declines 
to zero rapidly. Integrate the control acceleration and we can 
obtain the velocity increment required in the station-keeping 
control, which is presented in TABLE I.  

Data in TABLE I show that the total velocity increment 
required during the 5-period simulation is 368.8271 /m s . 
Due to the initial errors added to the initial values, a much 
higher control acceleration is demanded at the beginning of 
the simulation, which leads to a huge velocity increment 
300.5907 /m s  in the first period. When the simulation comes 
to its stable stage, the average velocity increment for a period 
is 3.7873 /m s , which is much lower than the first period. This 
shows that if the satellite can inject into the orbit more 
precisely, the control consumption in the beginning stage can 
be potentially reduced. 

From the analysis of the simulation results, we can know 
that the station-keeping strategy proposed in this work is able 
to accomplish a relatively high precision. However, there is a 
trade-off between the precision and the control consumption, 
which means a higher precision requests a higher control 
consumption. What is more, a more precise reference orbit 
leads to a lower control consumption. In this work, the 
reference halo orbit is modified under CRTBP model, which 
isn’t precise enough. Therefore, when modifying the reference 
orbit under a high fidelity model, the velocity increment 
required has the potential to decline in a large scale. 

V. CONCLUSION 
In this work, we firstly obtained the reference halo orbit 

based on the Richardson three-order analytic solution, 
differential correction and target shooting strategy under the 
CRTBP model. Then we designed a golden-section controller 
for velocity tracking and a PD controller for position tracking. 
Finally, we verified the controller through a simulation under 
ERTBP model. After analyzing the simulation results, we can 
conclude that the controller can accomplish a relatively high 
precision in station-keeping control of halo orbit; when the 
satellite comes to its stable stage, the control consumption 
demanded is pretty low. In future work, we will focus on the 
improvement of the precision of reference orbit to reduce the 
control consumption of the station-keeping control. 
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